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Abstract

In this article, we attempt to solve the Camassa–Holm equation using extended trial equation
method (ETEM). The validity and applicability of the method are operated for two different
cases of the relationship equation obtained as a result of balance principle. Finally, we obtain
single kink and hyperbolic function solution of the problem.
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1 Introduction

Scientific modeling of nonlinear phenomena in the real world is quite common. Nonlinear partial
differential equations (NPDEs) representing a variety of mathematical models in real–life applica-
tions arise in many different fields, such as fluids and quantum mechanics, ecology, physical systems,
thermodynamics, chemistry, engineering, mathematics, and biology, etc. It is crucial important to
make a decison of which strategy should be adopted to analyze the behaviour of equation. The
solution of these equations can include some obstacles such as irregularity or uniqueness. Within
this framework, associated with our work, we briefly give some numerical methods such as G′/G-
expansion method [20], homotopy analysis method [7], finite difference methods [17], finite element
method [13], multiple exp-function method [14], homotopy perturbation method [16], sub-ODE
method [18], variational iteration method [8], modified extended tanh–function method [10], spec-
tral collocation and waveform relaxation methods [12], Exp–Function Method [15], the extended
F-expansion method [1], and Laguerre Pseudospectral method [19].

The propose of this paper is to investigate hyperbolic function and single kink solution of
Camassa–Holm equation by employing ETEM. This method has often been used by many authors
in a variety of differential equations. For example, Gebreel [11] get some different kinds of exact
solutions to nonlinear coupled Schrodinger–Boussinesq equations. Ekici et al. [9] use the present
method and G′/G-expansion to obtain solitons of the Kundu–Eckhaus equation. Recently, Biswas
et al. [2, 3, 4, 5] obtain optical solitons by carrying out ETEM to some different model problems.

This paper is arranged as follows. In Section 2, we introduce ETEM for a given general NPDEs.
In Section 3, we apply proposed method to Camassa-Holm equation. Finally, the conclusion is
drawn in Section 4.

2 Extended trial equation method

In this section, we define the ETEM based on a general nonlinear partial differential equation.
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Step 1. Consider a nonlinear PDE as follows

P (y, yt, yx, yxx, ytt, ...) = 0. (2.1)

Firstly, we employ the following general wave transformation formula

y(x, t) = y(η), η = x− wt, (2.2)

where w 6= 0. Thus, the following nonlinear ODE is constructed by substituting (2.2) into (2.1)

N(y, y′, y′′, ...) = 0. (2.3)

Step 2. Secondly, we describe the trial equation as

y =

δ∑
j=0

τjκ
j , (2.4)

where

(κ′)
2

= Λ(κ) =
Φ(κ)

Ψ(κ)
=

ξθκ
θ + . . . +ξ1κ+ ξ0

ζ∈κ∈ + . . . +ζ1κ+ ζ0
. (2.5)

Taking into consideration (2.4) and (2.5), we obtain

(y′)
2

=
Φ(κ)

Ψ(κ)

 δ∑
j=0

jτjκ
j−1

2

, (2.6)

y′′ =
Φ′(κ)Ψ(κ)− Φ(κ)Ψ′(κ)

2Ψ2(κ)

 δ∑
j=0

jτjκ
j−1

+
Φ(κ)

Ψ(κ)

 δ∑
j=0

j(j − 1)τjκ
j−2

, (2.7)

where Φ(κ) and Ψ(κ) are two polynomials. Substituting (2.4), (2.6), and (2.7) into (2.3), we provide
a polynomial equation Ω(κ) of κ as follows

Ω(κ) = µsκ
s + . . . +µ1κ+ µ0 = 0. (2.8)

We then find a relationship between the unknown basic parameters θ, ∈, and δ by employing
balance principle.
Step 3. Consider the coefficients of Ω(κ) are equal to zero. We take a systems of algebraic equations
as follows

µj = 0, j = 0, . . . , s. (2.9)

By solving (2.9), we obtain the values of ξ0, . . . , ξθ; ζ0, . . . , ζ∈ , and τ0, . . . , τδ.
Step 4. Simplify (2.5) to the integral form, we get

±(η − η0) =

∫
dκ√
Λ(κ)

=

∫ √
Ψ(κ)

Φ(κ)
dκ (2.10)

Implementing a complete discrimination systems of polynomial to categorize the roots of Φ(κ) and
solving (2.10), we obtain the exact solutions to nonlinear PDE.
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3 Implementing of ETEM to Camassa-Holm equation

In this section, we consider the generalized nonlinear Camassa–Holm equation as follows:

yt + 2kyx − yxxt + (b+ 1)yyx = byxyxx + yyxxx, (3.1)

where, for b = 2, the function y(x, t) is defined as the fluid velocity for x ∈ R, t ≥ 0, and k ≥ 0.
Equation (3.1) is defined as a model for determining shallow water gravity waves with higher order
dispersion [6]. It also has the conservation laws and can be integrable. If we choose k = 0, then the
Camassa-Holm equation reach the peakon solutions that has solitons with a sharp and discontinuity
peak in wave slope. Now, we will apply ETEM to solve Camassa-Holm equation a step by step
approach.

At first, we take the transformation

y(x, t) = y(η), η = x− wt,

where w is considered as an arbitrary constant. Integrating the resulting equation for η and con-
stituting the integration constant to zero, we obtain the following nonlinear ODE

(−w + y)y′′ +
(y′)

2

2
− (−w + 2k)y − 3

y2

2
= 0. (3.2)

Substituting (2.4), (2.6) and (2.7) into (3.2) and using the balance principle for the algebraic
equation, we find the relationship as

θ =∈ +2.

Case 1. Choosing ∈= 0, θ = 2 and δ = 1, we deduce

(y′)
2

=
τ1

2(ξ2κ
2 + ξ1κ+ ξ0)

ζ0
,

y′′ =
τ1(2ξ2κ+ ξ1)

2ζ0
,

(3.3)

where ξ2 6= 0 and ζ0 6= 0. By solving the system of equations (2.9), we get

w = −(τ0 +
ξ2τ0

2 − ξ0τ1
2kξ2

), ξ1 =
2ξ2(k + τ0)

τ1
, ζ0 = ξ2,

ξ0 = ξ0, ξ2 = ξ2, τ0 = τ0, τ1 = τ1.

(3.4)

Putting (3.4) into (2.5) and (2.10), we obtain

±(η − η0) = W

∫
dκ√
Λ(κ)

, (3.5)

where

Λ(κ) = κ2 +
ξ1
ξ2
κ+

ξ0
ξ2
,W =

√
ζ0
ξ2
. (3.6)
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Consequently, we write (3.5) as follows

±(η − η0) =

√
ζ0
ξ2

∫
dκ√

κ2 + ξ1
ξ2
κ+ ξ0

ξ2

=

∫
dκ√

κ2 + 2(k+τ0)
τ1

κ+ ξ0
ξ2

. (3.7)

Integrating (3.7), we obtain the solutions to (3.1) as follows

± (η − η0) = ln |κ− α1|
± (η − η0) = 2 ln

∣∣√κ− α1 +
√
κ− α2

∣∣ , (3.8)

where α1 and α2 are the roots of Λ(κ). Substituting the solutions (3.8) into (2.2), we get

y1(x, t) = τ0 + τ1(e(x+(τ0+
ξ2τ0

2−ξ0τ1
2kξ2

)t−η0) + α1),

y2(x, t) = τ0 + τ1((e(x+(τ0+
ξ2τ0

2−ξ0τ1
2kξ2

)t−η0)

+(α1 − α2)
2
e−(x+(τ0+

ξ2τ0
2−ξ0τ1

2kξ2
)t−η0) + 2(α1 + α2))(4)

−1
.

(3.9)

If we take η0 = α2 = 0 and α1 = 1, then we rewrite the solutions (3.9) as single kink solution and
the hyperbolic function solution, respectively, as follows

y1(x, t) = τ0 + τ1(e(x+A1t) + 1),

y2(x, t) = τ0 + τ1
1

2
(cosh(x+A1t) + 1),

(3.10)

where A1 = τ0 + ξ2τ0
2−ξ0τ1
2kξ2

and the inverse width of solitons is 1.
Case 2. Now choosing ∈= 0, θ = 2 and δ = 2, we get

y = τ0 + τ1κ+ τ2κ
2, (y′)

2
=

(τ1 + 2τ2κ)
2
(ξ2κ

2 + ξ1κ+ ξ0)

ζ0
,

y′′ =
4τ2(ξ2κ

2 + ξ1κ+ ξ0) + (τ1 + 2τ2κ)(2ξ2κ+ ξ1)

2ζ0
,

(3.11)

where ξ2 6= 0, ζ0 6= 0. By solving the systems of algebraic equation (2.9), we obtain

ξ0 = ξ0, ξ1 =
ξ2τ1
τ2

, ξ2 = ξ2, ζ0 = 4ξ2,

τ0 =
τ1

2 − 8kτ2
8τ2

, τ1 = τ1, τ2 = τ2, w =
−64k2τ2

2 + τ1
4

128kτ22
.

(3.12)

Substituting these results into (2.5), we have

±(η − η0) =

√
ζ0
ξ2

∫
dκ√

κ2 + ξ1
ξ2
κ+ ξ0

ξ2

= 2

∫
dκ√

κ2 + τ1
τ2
κ+ ξ0

ξ2

. (3.13)
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Integrating (3.13), we obtain the solutions to (3.1) as follows

± (η − η0) = 2 ln |κ− α1| ,
± (η − η0) = 4 ln

∣∣√κ− α1 +
√
κ− α2

∣∣ , (3.14)

where α1 and α2 are the roots of Λ(κ). Substituting the solutions (3.14) into (2.2), we get

y3(x, t) = τ0 + τ1(e
1
2 (x−

−64k2τ2
2+τ1

4

128kτ2
2 t−η0)

+ α1) + τ2(e
1
2 (x−

−64k2τ2
2+τ1

4

128kτ2
2 t−η0)

+ α1)

2

,

y4(x, t) = τ0 + τ1((e
1
2 (x−

−64k2τ2
2+τ1

4

128kτ2
2 t−η0)

+(α1 − α2)
2
e
− 1

2 (x−
−64k2τ2

2+τ1
4

128kτ2
2 t−η0)

+ 2(α1 + α2))(4)
−1

)

+τ2((e
1
2 (x−

−64k2τ2
2+τ1

4

128kτ2
2 t−η0)

+(α1 − α2)
2
e
− 1

2 (x−
−64k2τ2

2+τ1
4

128kτ2
2 t−η0)

+ 2(α1 + α2))(4)
−1

)

2

.
(3.15)

For simplicity, η0 = α2 = 0 and α1 = 1, then we rewrite the solutions (3.15) as

y3(x, t) =

 2∑
j=0

τj

(
e

1
2 (x−A2t) + 1

)j ,
y4(x, t) =

 2∑
j=0

τj

(
1

4
(cosh [(x−A2t)] + 1)

)j ,
(3.16)

where A2 = −64k2τ22+τ1
4

128kτ22 and the inverse width of solitons is 1
2 .

4 Conclusion

In this work, we obtain the hyperpolic function and single kink solution of the Camassa-Holm
equation using the ETEM. The performance of method provide a remarkable and impressive result
for the problem under consideration. Consequently, we observe that ETEM contains an effective
algorithm and powerful solution for the model problem.
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